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Study highlights 

⚫ GULP1 exhibited predictive accuracy comparable to that of a 15-gene risk score model for 

HCC recurrence with high clinical application potential and robustness. 

⚫ GULP1 was specifically overexpressed in HCC, distinguishing it from other liver conditions 

and showing significant prognostic and diagnostic value. 

⚫ GULP1 promoted tumor growth, EMT, and invasiveness by modulating β-catenin signaling, 

playing key roles in HCC progression. 

⚫ Our findings suggest GULP1 as a promising non-invasive biomarker and therapeutic target for 

HCC recurrence and progression. 
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ABSTRACT 

Backgrounds/Aims: Hepatocellular carcinoma (HCC) is characterized by high recurrence and 

mortality, necessitating the identification of reliable biomarkers. In this study, we aimed to 

identify the predictive gene signatures for HCC recurrence and evaluate the efficiency of GULP 

PTB domain-containing engulfment adaptor 1 (GULP1) as a predictive and diagnostic marker 

and therapeutic target for HCC. 

Methods: We analyzed genomic datasets from The Cancer Genome Atlas and Gene Expression 

Omnibus databases via least absolute shrinkage and selection operator Cox regression and 10-

fold cross-validation, leading to the development of a 15-gene risk score model, which was 

validated using three independent datasets. Serum GULP1 and α-fetoprotein levels were 

assessed to determine the diagnostic accuracy of the model. Using clinical cohorts and patient 

sera, GULP1 roles were examined, and functional assays in vitro and in vivo were used to 

evaluate its effects on cell growth, epithelial–mesenchymal transition (EMT), ADP-

ribosylation factor 6 activation, and β-catenin signaling. 

Results: Our newly developed risk-score model accurately predicted recurrent HCC in all 

datasets. Among the 15 genes in the risk score model, GULP1 was overexpressed in patients 

with HCC and independently predicted HCC recurrence. Its expression modulation influenced 

cell growth and EMT, with observed effects on ADP-ribosylation factor 6 activation and β-

catenin signaling pathways. 

Conclusions: GULP1 is a crucial biomarker for HCC, serving as a non-invasive diagnostic and 

predictive tool. It also plays key roles in HCC progression. Our findings highlight the potential 

use of GULP1 in treatment strategies targeting EMT and HCC recurrence to improve the 

personalized care and patient outcomes. 

Keywords: Liver cancer; GULP1; Recurrence; Metastasis; Diagnosis 
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INTRODUCTION  

Hepatocellular carcinoma (HCC) is a prevalent aggressive cancer with high recurrence and, 

mortality rates and low patient quality of life.1 Key risk factors for HCC include chronic 

hepatitis (CH) B and C, excessive alcohol intake, and metabolic disorders.2, 3 Due to subtle 

early symptoms, HCC is often diagnosed at advanced stages, complicating its timely treatment 

and contributing to recurrence rates as high as 80%.1, 4 Although alpha-fetoprotein (AFP) is 

widely used in clinical practice as a serum biomarker for HCC, multiple studies, it shows 

limited sensitivity and specificity.1 This shortcoming highlights the need for more reliable 

biomarkers for the early diagnosis, risk stratification, and personalized treatment of HCC. 

In this study, we applied advanced machine learning techniques, including least absolute 

shrinkage and selection operator (LASSO) Cox regression with 10-fold cross-validation, to 

identify the gene signatures associated with HCC recurrence. Based on the results, we 

developed a 15-gene risk score (RS) model and identified the GULP PTB domain-containing 

engulfment adaptor 1 (GULP1) as a potential prognostic marker for HCC recurrence. 

GULP1 is the human counterpart of CED6 from Caenorhabditis elegans, with both playing 

a conserved role in cellular engulfment across species.5 GULP1 facilitates EphB/ephrinB 

trogocytosis—a process of cell surface material transfer—by collaborating with Tiam2 and is 

essential for recruiting dynamin, a crucial protein for cellular internalization.6 Interestingly, 

although GULP1 is typically recognized as a tumor suppressor, its expression was elevated in 

HCC, where it promoted β-catenin activity and epithelial–mesenchymal transition (EMT), 

which are associated with metastasis.7, 8 Importantly, our data indicate that GULP1 outperforms 

AFP in detecting early-stage HCC and predicting its recurrence, highlighting it as a more 

sensitive and specific biomarker than AFP. Furthermore, our investigation highlighted the 

potential of GULP1 as a biomarker in liquid biopsies, serving as a minimally invasive tool to 
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monitor HCC recurrence and progression, thereby advancing personalized medicine for HCC. 

In summary, our study emphasized GULP1’s role in recurrence and metastasis, providing 

insights into the mechanisms behind HCC progression and suggesting promising strategies for 

early diagnosis and targeted therapy. 

 

MATERIAL AND METHODS  

Patients and specimens 

HCC and adjacent non-cancerous tissues and blood samples obtained from the Ajou 

University Hospital (Suwon, South Korea) were used in this study. Tissue samples were 

collected from 81 patients with HCC who underwent hepatectomy, and 256 blood samples were 

collected from healthy individuals and patients with CH, cirrhosis, and HCC. To validate the 

diagnostic performance of GULP1 across various liver disease etiologies, additional patient 

samples, including hepatitis C virus–induced liver cirrhosis (HCV-LC; n = 30), alcoholic LC 

(n = 30), alcoholic HCC (n = 30), metabolic dysfunction-associated steatohepatitis-LC 

(MASH-LC; n = 30), MASH-HCC (n = 30; 5 with confirmed MASH and 25 with unknown 

origins), cholangiocarcinoma (n = 8), and combined hepatocellular carcinoma and 

cholangiocarcinoma (n = 22) samples, were obtained from the Human Biobank. The patient 

demographics and clinical characteristics are presented in Supplementary Tables 1-3. 

 

Collection and analysis of gene expression data for HCC recurrence 

We analyzed the gene expression data from three publicly available HCC datasets 

(GSE14520, GSE114564, and The Cancer Genome Atlas [TCGA] liver hepatocellular 

carcinoma [LIHC]) to identify the genes associated with HCC recurrence. The patients were 

divided into non-recurrent and recurrent groups based on their recurrence status within two 
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years post-surgery. Initial differential expression analysis identified the candidate genes across 

all datasets. Using Elastic Net Cox regression and LASSO Cox regression with cross-validation, 

we refined these candidates to construct a robust 15-gene recurrence RS model. Detailed 

patient baseline characteristics are presented in Supplementary Table 4, and additional 

methodological details, including dataset processing and statistical parameters, are provided in 

the Supplementary Methods section. 

 

RESULTS 

Development of a 15-gene RS model to predict HCC recurrence 

In this study, patient selection criteria included patients who underwent surgical liver resection 

and remained recurrence-free for over two years (non-recurrence [NR] group), as well as 

patients who experienced recurrence (recurrence [R] group). To identify the differentially 

expressed genes (DEGs) associated with HCC recurrence, we analyzed three datasets 

(GSE14520, GSE114564, and TCGA LIHC) with clinical information on patients with HCC 

who underwent surgical liver resection and were either recurrence-free for over two years or 

experienced recurrence within two years (Supplementary Table 4). Venn diagram-based 

analysis identified 50 overlapping DEGs between the R and NR groups (Fig. 1A). To identify 

the genes potentially associated with recurrence, we conducted Elastic Net Cox regression 

analysis on the 50 selected genes within TCGA LIHC dataset. 

Lambda values, a hyperparameter for model optimization, were examined for each gene (Fig. 

1B, left; Supplementary Table 5). Through 10-fold cross-validation, optimal lambda value was 

determined as 0.1829059, as indicated by the blue line in the graph (Fig. 1B, right panel). From 

this analysis, 15 genes were identified as independent predictors within the model, and their 

respective regression coefficients are listed in Supplementary Table 6.  
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Next, to further refine the RS model, we calculated RSs for each gene by applying univariate 

Cox regression to the expression values of the 15 genes using TCGA dataset of HCC with 

recurrence information. Regression coefficient for the RS model was obtained as follows: 

RS = (0.03208 × GULP1) + (−0.04351 × LCAT) + (0.29381 × PPAT) + (−0.05648 × LPXN) 

+ (0.09575 × NOP56) + (−0.03938 × CD4) + (0.12171 × ZC2HC1A) + (0.42938 × PPIA) + 

(0.08035 × CST7) + (−0.04075 × PRKCQ) + (0.12525 × PHF20) + (0.03416 × RAB23) + 

(0.07323 × PCDHB6) + (−0.17598 × CXCR6) + (−0.09678 × SLC4A10). 

Using TCGA model as a reference, a cut-off value was used in each dataset to classify the 

patients into high- and low-risk groups. Correlation analysis of all datasets consistently 

demonstrated a negative correlation between patient RS scores and survival (Fig. 1C). Notably, 

our 15-gene RS model outperformed the existing 7-gene models, showing superior predictive 

performance and higher net benefits across all datasets. (Supplementary Fig. S1A).9 Receiver 

operating characteristics (ROC) analysis further confirmed the predictive capacity of the 15-

gene RS model, with area under the curve (AUC) ≥ 0.7, indicating relatively high accuracy in 

predicting HCC recurrence (Fig. 1D). Additionally, GSEA revealed the significant enrichment 

of gene sets from Hallmark Collection in the high-risk group, indicating their involvement in 

specific signaling pathways, such as E2F targets, G2/M checkpoint, mitotic spindle, and MYC 

targets v1 (Supplementary Fig. S1B). This connection is crucial because MYC influences EMT 

and recurrence in various cancers, including HCC.10-12 Notably, Kaplan–Meier curves showed 

that the low-risk group (RS_Low) exhibited a significantly longer recurrence-free survival 

(RFS) than the high-risk group (RS_High) in all three datasets (Fig. 1E). Through univariate 

analysis of the clinical information in each dataset, RS model exhibited a consistent and 

independent association with the diagnostic outcome in all analyzed datasets (Fig. 1F). Cox 

regression analysis of RFS in TCGA cohort revealed that the RS model exhibited significant 
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associations in both univariate (hazard ratio [HR]: 2.72; 95% confidence interval [CI]: 2.146–

3.443) and multivariate (HR: 2.08; 95% CI: 1.311–3.313) analyses, showing the highest HR 

compared to other variables (Supplementary Table 7). 

 

Elevated GULP1 expression in HCC highlights its potential as a liver cancer-specific 

biomarker 

 Within the 15-gene RS model, GULP1 emerged as a potent biomarker, showing predictive 

accuracy comparable to that of the entire model for HCC recurrence. Although the RS model 

robustness was enhanced by integrating multiple genes, GULP1 alone was sufficient to stratify 

patients according to the recurrence risk with similar precision (Supplementary Fig. S2). These 

findings suggest GULP1 as a simple and cost-effective biomarker for clinical use that reliably 

predicts the recurrence risk without the need for complex multigene profiling. Additionally, 

analysis of GULP1 in 33 different TCGA cancer types revealed that GULP1 was generally 

downregulated in other cancer types (Supplementary Fig. S3A). This finding was contrary to 

our expectations and prompted us to specifically investigate its role in HCC. We investigated 

the expression levels of GULP1 in HCC various stages and conditions using GepLiver DB 

datasets. This analysis revealed differences in GULP1 expression levels among the normal, 

adjacent non-tumor (ADJ_HCC), and HCC liver tissues, with HCC tissues exhibiting markedly 

elevated GULP1 levels (Fig. 2A). Quantitative analysis showed that GULP1 levels were 

significantly higher in HCC tissues than in normal, viral hepatitis, nonalcoholic fatty liver 

disease, and cirrhosis tissues, underscoring its potential in distinguishing HCC from other liver 

conditions (Fig. 2B). 

High-throughput analysis of spatial transcriptomics showed a pronounced increase in 

GULP1 levels in the malignant hepatocytes, suggesting a distinct spatial distribution of the 
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gene in the tumor microenvironment (Fig. 2C and D; Supplementary Fig. S3B). 

scRNA-seq data from GepLiver DB revealed diverse cellular landscapes in various liver cell 

types. The datasets included various liver-specific and immune cells, providing a 

comprehensive view of the cell populations present in both normal and diseased liver tissues 

(Fig. 2E, left; Supplementary Fig. S3C). Within this diverse cellular environment, we 

specifically examined the GULP1 expression levels in hepatocytes. The proportion of GULP1-

positive hepatocytes increased progressively with the progression of liver malignancy. In 

normal tissues (NT), only 0.82% of hepatocytes were GULP1-positive; however, this number 

increased to 1.91% in ADJ_HCC tissues, 2.9% in non-malignant HCC tissues, and 4.39% in 

malignant HCC tissues. (Fig. 2E, right). Similarly, analysis of the scAtlasLC database and 

subsequent quantification of GULP1-positive hepatocytes confirmed the increased GULP1 

expression in HCC, emphasizing its significance in liver cancer pathology (Fig. 2F). Mean 

expression levels of GULP1 in different cell types in the GSE151530 dataset further confirmed 

that the hepatocytes were the primary source of GULP1 expression, highlighting the 

hepatocyte-specific roles of GULP1 in HCC (Fig. 2G; Supplementary Fig. S3D). Subsequently, 

hepatocytes were classified into GULP1-positive and -negative populations to explore the 

functional implications of GULP1 expression (Fig. 2H; Supplementary Fig. S3E). GULP1-

positive hepatocytes were transcriptionally enriched in the key oncogenic pathways, including 

the EMT, hypoxia, and KRAS pathways critical for HCC progression (Fig. 2I; Supplementary 

Fig. S3F and G). These findings suggest that hepatocyte clusters with high GULP1 expression 

are transcriptionally aligned with key oncogenic processes. 

 

GULP1 is a prognostic and diagnostic marker for HCC 

Considering the predictive strength of GULP1, Kaplan–Meier analysis was conducted to 
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assess the survival differences based on GULP1 expression levels in HCC. Patients in the three 

datasets, GSE14520, GSE114564, and TCGA LIHC, with high GULP1 expression levels 

(GULP1_High) showed worse prognosis than those with low GULP1 levels (GULP1_Low; 

Supplementary Fig. S4A–C). To explore the diagnostic and prognostic value of GULP1 in HCC, 

we examined an independent cohort of 81 patients with HCC who underwent hepatic resection 

(Supplementary Table 1). Quantitative reverse transcription-polymerase chain reaction (qRT-

PCR) analysis revealed significantly increased GULP1 transcript levels in the tumor (T) 

samples compared to those in the non-tumor (NT) samples, confirming its elevation in HCC 

tissues (Supplementary Fig. S4D and E; Fig. 3A, left box plot in the tissue sample panel). In a 

separate validation cohort, we assessed the protein levels of GULP1 as a diagnostic marker in 

serum samples (Supplementary Table 2). Serum GULP1 levels were significantly elevated in 

patients with HCC compared to those in the NT group, confirming its upregulation in HCC 

(Fig. 3A, left box plot in the blood sample panel). GULP1 concentrations were significantly 

higher in patients at different HCC stages (mUICC I, I/II, and III/IV) than in those with normal 

liver (NL), CH, and liver cirrhosis (LC; Fig. 3A, middle scattered dot plot in the blood sample 

panel). Although the diagnostic power of GULP1 at the transcriptomic level in tissue samples 

showed a modest AUC of 0.67 for detecting liver cancer; its diagnostic performance as a serum-

based marker was more robust with an AUC of 0.85, demonstrating superior accuracy in 

distinguishing HCC from the normal liver and early liver diseases (Fig. 3A, ROC curves for 

tissue and blood sample panels). 

Compared to AFP, GULP1 showed significantly higher AUC values in the high-risk group 

(CH/LC) for all patients with HCC (0.827 for GULP1 and 0.595 for AFP) (Fig. 3B, left panel). 

In the mUICC III/IV group, GULP1 exhibited a higher AUC (0.877) than AFP (0.766), 

although the difference was not statistically significant (Fig. 3B, second panel). In the mUICC 
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I/II group, GULP1 demonstrated a relatively strong diagnostic ability (AUC = 0.816) compared 

to that of AFP (AUC = 0.556; Fig. 3B, third panel). In the earliest stage of HCC (mUICC I, 

tumor size ≤ 2 cm), GULP1 showed a high AUC (0.749), whereas the diagnostic accuracy of 

AFP was significantly lower (AUC = 0.516; Fig. 3B, the fourth panel). 

Serum GULP1 and AFP levels showed distinct positivity rates across healthy subjects and 

CH, LC, and HCC groups. Although GULP1 demonstrated a lower incidence than AFP in the 

non-HCC groups (i.e., NL, CH, and LC), it exhibited a higher positivity rate in the HCC group 

(Fig. 3C, left panel). Detection rates of AFP and GULP1 in all 145 patients with liver cancer 

were 44 and 70%, respectively. When both markers were used together, HCC positivity rate 

increased to 81% (Fig. 3C, right panel). 

To investigate the variation in GULP1 expression levels across different etiologies of HCC, 

we analyzed the serum GULP1 levels in cohorts stratified by the hepatitis B virus (HBV), 

hepatitis C virus (HCV), alcohol, and MASH (Supplementary Table 3). GULP1 levels were 

significantly higher in HCC than in LC across all tested etiologies (Supplementary Fig. S5A–

E). In HBV-induced liver disease, GULP1 levels were significantly higher in HCC than in LC 

(P < 0.001), with an AUC of 0.871, surpassing the diagnostic performance of AFP (AUC = 

0.707; P = 0.006; Supplementary Fig. S5A). In HCV-, alcoholic-, and MASH-related liver 

diseases, GULP1 levels were consistently and significantly elevated in HCC compared to those 

in LC. Although ROC analysis indicated that GULP1 demonstrated superior diagnostic 

performance over AFP for these etiologies, the observed differences were not statistically 

significant (Supplementary Fig. S5B–D). We further evaluated the diagnostic potential of 

GULP1 in non-HCC liver tumors, including cholangiocarcinoma and combined hepatocellular-

cholangiocarcinoma. GULP1 levels were significantly higher in non-HCC liver tumors than in 

non-tumor samples (NL and LC; P < 0.001). ROC analysis revealed that GULP1 exhibited an 
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AUC of 0.833 in distinguishing the non-tumor samples (n = 145) from the non-HCC liver 

tumors (n = 30), markedly outperforming AFP (AUC = 0.540; P < 0.0001; Supplementary Fig. 

S5E). Comparing LC to non-HCC liver tumors, GULP1 showed an AUC of 0.790, consistently 

surpassing AFP performance (AUC = 0.524; P = 0.002; Supplementary Fig. S5F). 

Considering the strong association between GULP1 and the 15-gene RS model for predicting 

recurrent HCC, we further analyzed its potential as a recurrence biomarker. qRT-PCR analysis 

of tissue samples revealed significantly increased GULP1 expression levels in R versus NR 

cases (Fig. 3D, left box plot in the tissue sample panel). Time-dependent AUROC curves were 

plotted to evaluate the ability of GULP1 to predict recurrence over time. Time‐dependent AUC‐

based C‐index for GULP1 in tissue samples was 0.745 (95% CI: 0.611–0.859), surpassing that 

of AFP 0.663 (95% CI: 0.489–0.815). Statistical comparison of mean time‐dependent AUCs 

confirmed the superior predictive performance of GULP1 (P = 8.82 × 10⁻¹⁸; Fig. 3D, time-

dependent AUC curve in the tissue samples panel). High serum GULP1 levels were 

significantly associated with R, further supporting its potential as a biomarker for liver cancer 

recurrence (Fig. 3D, left box plot in the blood sample panel). Time-dependent AUROC analysis 

revealed that GULP1 exhibited a slightly higher predictive capacity than AFP, with a C-index 

of 0.726 (95% CI: 0.623–0.826) vs. 0.703 (95% CI: 0.576–0.814), although the difference was 

not statistically significant (P = 0.188; Fig. 3D, time-dependent AUC curve in the blood 

samples panel). Western blotting analysis confirmed this upregulation, showing elevated 

GULP1 protein levels in RT vs. PT tissues, underscoring its involvement in recurrence 

mechanisms (Fig. 3E). Furthermore, tissue (left) and serum (right)-based RFS evaluations 

revealed that high GULP1 expression was significantly associated with a poor patient 

prognosis (Fig. 3F). 
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GULP1 promotes tumor growth, proliferation and invasiveness in HCC cells 

To investigate the roles of GULP1 in tumor growth, proliferation, and invasion in HCC, we 

analyzed its expression levels in various liver cancer cell lines. Endogenous GULP1 levels 

were the highest in PLC/PRF/5 and Huh-7 cells, leading to their selection for subsequent 

experiments (Supplementary Fig. S6A). GULP1 knockdown (siGULP1 group) significantly 

reduced the cell growth, proliferation, and clonogenic capacity. These effects were partially 

rescued by GULP1 overexpression (GULP1_OE; Fig. 4A). To further validate the oncogenic 

potential of GULP1 in vivo, GULP1-suppressed Huh-7 cells were subcutaneously injected into 

female BALB/c nude mice. GULP1-depleted cells exhibited a significantly lower growth rate 

than the negative control cells (Fig. 4B).  

Furthermore, immunohistochemical (IHC) analysis of xenograft tumor tissue sections 

revealed reduced Ki-67 and PCNA expression levels in the GULP1-depleted group (Fig. 4C). 

These findings highlight the roles of GULP1 in promoting tumor growth and proliferation. 

However, as GULP1 was upregulated in recurrent HCC and affected RFS, we examined its 

impact on metastasis and invasion, which are critical phenotypes influencing HCC recurrence, 

using a wound-healing assay to observe the effect of GULP1 on the migration of liver cancer 

cells. GULP1 knockdown significantly reduced the wound-healing capacity of these cells, 

whereas GULP1 re-expression effectively restored their migratory potential (Fig. 4D). 

Transwell invasion assay showed a similar effect of GULP1 expression on cell invasiveness 

(Fig. 4E, left panel). Three-dimensional sphere cultures showed that GULP1 modulation 

significantly affected sphere formation and cell outgrowth (Fig. 4E, right panel), suggesting 

that GULP1 contributes to cell invasion.  

In a subcutaneous xenograft model, GULP1 knockdown significantly affected the expression 

levels of various markers. Specifically, expression levels of epithelial markers (E-cadherin and 
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zonula occludens-1) were upregulated, whereas those of mesenchymal markers (vimentin, 

fibronectin, and slug) and angioinvasion markers (CD31 and vascular endothelial growth factor 

[VEGF]) were downregulated upon GULP1 suppression (Fig. 4F). 

 

Validation of GULP1 roles in promoting HCC recurrence and metastasis in vivo 

To validate the effect of GULP1 on HCC recurrence in vivo, GULP1-suppressed Hepa1-6 

cells were orthotopically injected into the mouse liver and recurrent tumors were resected for 

evaluation (Fig. 5A). IHC analysis revealed a significant increase in GULP1 expression levels, 

particularly in RT tissues, compared to those in NL and PT tissues, highlighting its role in tumor 

recurrence and progression (Fig. 5B; Supplementary Fig. S6B). However, GULP1 suppression 

significantly reduced the number, size, and weight of recurrent tumors (Fig. 5C). 

IHC analysis also demonstrated changes in the expression levels of key markers in the 

GULP1-suppressed group (Fig. 5D). Specifically, decreased expression of the mesenchymal 

marker (vimentin) indicated reduced tumor invasion and metastasis. Increase in the levels of 

epithelial markers, such as E-cadherin, indicated the reversal of EMT, a critical step in cancer 

metastasis. Significant changes were observed in PT, with more pronounced alterations in RT 

than in the normal tissues, indicating the substantial impacts of GULP1 suppression on 

recurrent tumors (Fig. 5D). 

The above-mentioned findings were further validated using a lung metastasis model of ras-

transformed NIH-3T3 cells. GULP1 expression was regulated followed by tail vein injection, 

further supporting the metastatic role of GULP1 in promoting tumor recurrence 

(Supplementary Fig. S6C). Upon resection, metastatic nodules were significantly reduced in 

the GULP1-suppressed group (Fig. 5E, left panel). Hematoxylin and eosin (H&E) staining 

showed small metastatic lesions in the lungs of the GULP1-suppressed group, reinforcing the 
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reduction in metastasis (Fig. 5E, right panel). Additionally, analysis of RNA-seq data of the 

biopsies of patients with liver cancer (GSE164359) revealed higher GULP1 expression levels 

in the RT than in the adjacent liver (AL) and PT (Fig. 5F). 

Notably, no significant differences in body weight were observed in the three in vivo models 

after GULP1 knockdown (Supplementary Fig. S6D), indicating the potential of GULP1-

targeting therapeutics for recurrent and metastatic HCC. 

 

Mechanistic role of GULP1 in modulating β-catenin signaling in HCC 

DEAD-box helicase 5 directly interacts with β-catenin, facilitating its nuclear translocation 

and transactivation. This interaction is associated with alterations in the expression of GULP1, 

a protein associated with neuroblastoma progression.13 In our initial assessment of liver cancer 

cell lines, β-catenin suppression considerably decreased the GULP1 protein levels (Fig. 6A and 

B). Interestingly, modulation of GULP1 expression significantly influenced β-catenin 

localization, as observed via fluorescence microscopy and supported by quantitative analysis, 

indicating a strong correlation between GULP1 levels and β-catenin subcellular distribution 

(Fig. 6C and D). 

To further elucidate the mechanisms underlying GULP1-mediated modulation of β-catenin 

translocation, we investigated its interaction with ADP-ribosylation factor 6 (ARF6)-GTP 

based on the proposed role of GULP1 in stabilizing ARF6 activity.14 Consistently, our results 

revealed that changes in ARF6-GTP were barely affected by the reduction in GULP1 levels 

(Fig. 6E). However, in the presence of cycloheximide (CHX), a protein synthesis inhibitor, 

GULP1 depletion significantly decreased the ARF6-GTP levels. Remarkably, GULP1 re-

expression under these conditions successfully restored the ARF6-GTP levels, confirming the 

role of GULP1 in stabilizing ARF6 activity (Fig. 6E). Direct interaction between GULP1 and 
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ARF6 was further validated via fluorescence resonance energy transfer-based assay. Sm-Bit-

tagged ARF6 and Lg-Bit-tagged GULP1 were used to measure the luminescence signals 

indicative of their interactions (Supplementary Fig. S7A). Indeed, luminescence signals were 

significantly reduced when GULP1 was depleted, confirming the dependence of the signals on 

GULP1 presence. In contrast, luminescence signals were successfully rescued when GULP1 

was overexpressed in the depleted state (Supplementary Fig. S7B). When ARF6 expression 

was depleted, luminescence signals decreased, confirming the direct interaction between 

GULP1 and ARF6 (Supplementary Fig. S7C). Luminescence signals were significantly 

reduced upon β-catenin depletion (siCTNNB1 group), indicating that β-catenin activity is 

essential for ARF6–GULP1 interaction (Supplementary Fig. S7D). These findings demonstrate 

the dependency of GULP1-mediated β-catenin translocation on ARF6 activation, as 

knockdown of ARF6 suppressed β-catenin localization (Fig. 6F). Furthermore, ARF6 

downregulation was accompanied by a decrease in GULP1 expression, reinforcing their 

relationship (Supplementary Fig. S7E). 

Bioinformatics analyses identified a transcription factor 3 (TCF3)-binding motif within the 

GULP1 promoter region (chr 2:189,158,687-189,158,701), suggesting direct regulation by 

TCF3 (Supplementary Fig. S7F). Luciferase promoter mutation reporter assay was performed 

to confirm the binding of TCF3 to the GULP1 promoter. Mutations in the TCF3 binding site 

significantly reduced the luciferase activity, suggesting that TCF3 directly binds to and 

regulates the GULP1 promoter (Fig. 6G). 

ARF6 knockdown decreased the binding affinity of β-catenin and TCF3 to the GULP1 

promoter, as demonstrated by the chromatin immunoprecipitation assays (Fig. 6H; 

Supplementary Fig. S7G). Modulation of GULP1 expression further altered the TCF3 binding 

affinity to the GULP1 promoter region (Fig. 6I), indicating that these proteins form a complex 
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involving direct binding between β-catenin and TCF3 at the promoter region of GULP1. 

GULP1 regulated β-catenin interactions with key adhesion molecules, including N-cadherin 

and E-cadherin (Fig. 6J). This regulatory capacity of GULP1 extended to the expression of 

downstream β-catenin targets, such as SRY-box transcription factor 9, c-Myc, and fibronectin, 

indicating a positive feedback mechanism in the β-catenin signaling pathway that significantly 

influences EMT and HCC progression (Fig. 6K). GULP1 suppression reduced β-catenin 

expression in the in vivo experiment (Supplementary Fig. S7H). Further analysis of the 

GSE164359 dataset revealed that several key genes, including MKI67, CTNNB1, VIM, VEGFA, 

FN1, and SOX9, exhibited elevated expression levels in RT, similar to the GULP1 expression 

levels (Supplementary Fig. S7I). Correlation analysis revealed a moderately positive 

relationship between GULP1 and these gene expression levels, suggesting that GULP1 

influences these oncogenic pathways in recurrent HCC (Supplementary Fig. S7J). 

In summary, our study identified GULP1 as a β-catenin signaling modulator in HCC. By 

stabilizing ARF6-GTP, GULP1 facilitated β-catenin localization and transcriptional activation 

via TCF3 binding at its promoter, thereby driving oncogenic processes, such as EMT and tumor 

progression (Fig. 7). 

 

DISCUSSION 

Various guidelines have been established for primary liver cancer; however, management of 

recurrent liver cancer remains challenging despite various treatment options, such as 

hepatectomy, radiotherapy, transplantation, and systemic therapy.15, 16 Despite surgical 

resection being the preferred treatment, three-year recurrence rate of HCC remains high.17 For 

small recurrent HCC cases following surgical resection, radiofrequency ablation results in 

overall survival and RFS rates comparable to those observed with repeated surgical resection.18 
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Despite advancements in medical techniques, prediction of recurrent HCC remains challenging. 

Although such predictions can improve the patient survival rates by enabling proactive 

measures, accurate HCC recurrence prediction models are lacking. Conventional HCC markers, 

such as AFP, often exhibit low sensitivity and specificity in diagnosing various liver cancer 

types; therefore, many studies are exploring novel serum biomarkers, such as glypican-3, and 

multigene biomarker panels for liver cancer.19, 20 The near absence of reliable recurrence 

predictors underscores the importance of our study in this field. 

Thorough understanding of EMT, a hallmark of recurrence, is pivotal to predict HCC 

recurrence and its detrimental effect on the patient overall survival.21 EMT involves a transition, 

in which epithelial cells gain mesenchymal features and exhibit enhanced migration and 

invasion.22-24 This transition is accompanied by changes in cell morphology, reduced cell–cell 

adhesion, and increased migration and invasion. Several markers implicated in EMT are 

recognized as key players in HCC recurrence, including transcription factors Snail, Slug, and 

Twist.25 Downregulation of the levels of epithelial markers, such as E-cadherin and cytokeratin, 

and upregulation of the levels of mesenchymal markers, including N-cadherin, vimentin, and 

fibronectin, are commonly observed during EMT.26 Specifically, Wnt/β-catenin pathway is also 

implicated in EMT regulation, as aberrant activation of β-catenin drives EMT and promotes 

HCC progression and recurrence.27-29  

Building on these, this study explored the oncogenic role of GULP1 in HCC metastasis. 

Interestingly, GULP1 predominantly acts as a tumor suppressor in many cancer types. For 

instance, its reduced expression in ovarian cancer, attributed to epigenetic silencing via 

genomic methylation, is associated with advanced disease stages and unfavorable prognosis.7  

In urothelial carcinoma, downregulation of GULP1 levels induces cell growth, predominantly 

via activation of the NRF2–KEAP1 signaling pathway.8 However, our findings revealed its 
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different roles in HCC, where it functioned as an oncogene. Specifically, GULP1 inhibition 

reduced β-catenin activity, while its overexpression enhanced it. This modulation was achieved 

via ARF6 activation. The role of GULP1 in oncogenesis is thus context-dependent, akin to 

other cancer-associated genes with dual functions, such as ARID1A and HDAC6.30, 31 While 

GULP1 promotes β-catenin activation and EMT in HCC—facilitating tumor progression and 

recurrence—it suppresses tumorigenesis in ovarian and urothelial. These divergent roles 

underscore the importance of the tumor microenvironment and pathway-specific interactions 

in defining GULP1’s function. This not only broadens our understanding of the complex 

associations among GULP1, β-catenin signaling, and EMT but also highlights the pivotal role 

of EMT in cancer metastasis.32 Additionally, experimental results further suggest that GULP1 

functions as an oncogene. First, we demonstrated its elevation in both tissue and serum of HCC 

patients, as well as its association with recurrence through time-dependent AUROC analyses. 

Second, functional assays in vitro revealed that GULP1 knockdown dampens tumor cell 

proliferation, migratory capacity, and invasive behavior, while rescue experiments reversed 

these effects. Third, in vivo models established GULP1’s involvement in tumorigenesis and 

metastasis—particularly in recurrent settings—suggesting its pivotal role in both the initiation 

and progression of HCC.  

We anticipate that GULP1 serves as an oncogenic factor in HCC through diverse mechanisms. 

Notably, our GSEA findings indicate that GULP1 is linked not only to the Wnt pathway but 

also to other key signaling cascades such as NOTCH and HEDGEHOG (Supplementary Fig. 

S8A-D). These pathways are all well-documented to play crucial roles in HCC onset and 

progression, suggesting that GULP1 may integrate multiple oncogenic signals. Future research 

efforts should focus on elucidating these interactions to provide a more comprehensive 

understanding of GULP1-driven hepatocarcinogenesis. 
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Nevertheless, we acknowledge that GULP1 expression may also fluctuate due to liver 

inflammation, cirrhosis, and coexisting treatments. These factors highlight the need for 

additional large-scale, multicenter validation studies to refine assay cutoffs and adjust for 

confounding clinical variables. While our mechanistic data pinpoint GULP1’s role in ARF6-

mediated β-catenin activation, further targeted approaches could more definitively validate 

these interactions in HCC recurrence. In addition, its modest predictive power in serum 

underscores the need for further studies to refine detection thresholds, validate assay methods 

to enhance overall diagnostic accuracy and clinical utility.  

Looking ahead, we propose future studies to (1) explore combinational biomarker panels—

including GULP1 with AFP or other emergent markers—to enhance predictive accuracy, (2) 

systematically investigate how GULP1 cooperates with Wnt, Notch, and Hedgehog pathways, 

and (3) develop therapeutic interventions targeting GULP1-driven ARF6–β-catenin signaling 

in recurrent HCC. By addressing these gaps, we believe GULP1 may evolve into not only a 

valuable clinical biomarker but also a therapeutic target for controlling HCC progression and 

recurrence. 

Overall, this study revealed GULP1 as a key biomarker for HCC, acting both as a non-

invasive diagnostic tool and an oncogene driving HCC progression. Our findings highlight its 

potential for improving HCC treatment strategies, particularly for developing therapeutics 

targeting EMT and cancer cell growth. However, further research and clinical validation are 

crucial to fully harness the potential of GULP1 and substantially advance HCC treatment. 
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FIGURE LEGENDS 

Figure 1. Identification of differentially expressed genes (DEGs) in recurrent hepatocellular 

carcinoma (HCC), and development of a risk score (RS) model. (A) Flow chart of the selection 

of genes associated with recurrent HCC. Patient selection criteria included patients who 

underwent surgical liver resection and remained recurrence-free for over two years (non-

recurrence [NR]) and those who experienced recurrence (R). (B) Left: Coefficient profiles of 

correlated DEGs in least absolute shrinkage and selection operator (LASSO) analysis. Right: 

LASSO model parameter adjustment with 10-fold cross-validation. Blue dashed line indicates 

the optimal lambda value cutoff (0.1829059). (C) Correlation analysis of RS and patient 

survival using three HCC datasets: GSE14520, GSE114564, and The Cancer Genome Atlas 

(TCGA) liver hepatocellular carcinoma (LIHC). (D) Predictive potency determined via 

receiver operating characteristic (ROC) analysis. (E) Risk-based analysis of recurrence-free 

survival (RFS) in the GSE14520, GSE114564, and TCGA LIHC datasets using the Kaplan–

Meier approach. (F) Forest plots of univariate Cox regression analyses of clinical parameters 

affecting RFS. HCC differentiation was defined using the Edmondson grade scale. Statistical 

significance was determined via Cox proportional hazards regression analysis and log-rank 

tests for survival data. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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Figure 2. GULP1 is a HCC progression indicator. (A) Heatmap of GULP1 expression levels 

(Z-Score of log2(TPM+1)) in the normal, adjacent non-HCC (ADJ_HCC), and HCC tissues 

across 22 datasets from GepLiver DB. (B) Comparison of GULP1 expression levels across 

different liver phenotypes using data from GepLiver DB. Normal, n=362; viral hepatitis, n=180; 

nonalcoholic fatty liver disease (NAFLD), n=503; cirrhosis, n=63; HCC, n=724. (C) Spatial 

transcriptomic analysis of the tumor tissues. GULP1 expression levels were notably higher in 

the malignant hepatocytes (purple) of the same tissue, with minimal to no expression observed 

in the non-malignant hepatocytes (yellow). P9T and P10T indicate the unique patient IDs. (D) 

Proportion of GULP1-positive cells (%) across all analyzed tumor tissues from spatial 

transcriptomics. The labels (P1T, P2T, etc.) indicate patient IDs. (E) Uniform manifold 

approximation and projection (UMAP) plot of an integrated liver single-cell RNA-sequencing 

(scRNA-seq) dataset from GepLiver DB. Left: Cells colored by major cell type, indicating the 

distribution of cell types (e.g., hepatocytes, cholangiocytes, and immune cells) across different 

phenotypes. Right: Proportion of GULP1-positive cells (%) among hepatocytes in the normal, 

ADJ_HCC, and HCC tissues. (F) Left: UMAP plot of scRNA-seq data from the scAtlasLC 

database. Right: Proportion of GULP1-positive cells (%) among non-malignant and malignant 

hepatocytes from the scAtlasLC database. (G) Mean expression levels of GULP1 in different 

liver-associated cell types in the GSE151530 dataset. (H) UMAP plot showing the GULP1-

positive (+) and GULP1-negative (−) hepatocytes among the analyzed 18,539 hepatocytes. (I) 

Enrichment score plots of the hallmark pathways with GULP1-positive hepatocytes derived 

via single-sample gene set enrichment analysis (ssGSEA). 
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Figure 3. Clinical significance of GULP1 expression in HCC. (A) GULP1 levels in the paired 

tissue (left) and blood (right) samples. GULP1 levels were significantly elevated in the HCC 

tissues and serum samples of patients with HCC compared to those in the non-tumor (NT) 

groups. ROC analysis showed the high diagnostic accuracy of serum GULP1 in distinguishing 

HCC from NT and early liver disease cases. (B) ROC analysis results of GULP1 and AFP in 

high-risk liver disease groups (CH/LC) and across mUICC stages. (C) Left: Comparison of the 

serum GULP1 and AFP positivity rates among different groups (NL, chronic hepatitis [CH], 

liver cirrhosis [LC], and HCC). Right: Positivity rates of AFP, GULP1, and their combination 

in patients with liver cancer. (D) Comparison of GULP1 levels in recurrent (R) vs. non-

recurrent (NR) cases using the tissue (left panels) and serum (right panels) samples. GULP1 

levels are elevated in R cases, showing superior time-dependent predictive performance in 

tissues and comparable but slightly higher performance than AFP in the serum samples for 

recurrence prediction. (E) Left: Western blotting analysis of GULP1 protein levels in the 

primary tumor tissues (PTs) and recurrent tumor tissues (RTs) of three patients. #P01, #P02, 

and #P03 indicate the unique IDs of patients with HCC. Right: Densitometry analysis shows 

the increased GULP1 levels in recurrent tumors. (F) RFS analysis based on GULP1 expression 

in the tissue (left) and serum (right) samples. High GULP1 expression was associated with 

significantly poor prognosis in both tissue and serum evaluations in the validation cohort. 

Statistical significance was determined via unpaired t-tests for within-group comparisons and 

one-way analysis of variance (ANOVA) for multi-group comparisons. ROC curve analysis was 

performed for diagnostic evaluations. *P < 0.05, **P < 0.01, and ***P < 0.001. Data are 

represented as the mean ± standard error of the mean (SEM). 
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Figure 4. Targeted inactivation of GULP1 suppressed the tumorigenic potential of liver cancer 

cells. (A) Effects of GULP1 modulation on HCC cell growth, proliferation, and colony 

formation. Left: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay 

showed the regulated cell growth of PLC/PRF/5 and Huh-7 cells upon the alteration of GULP1 

expression. Middle: 5-Bromo-2′-deoxyuridine (BrdU) incorporation assay indicated the 

regulated proliferation of GULP1-modulated cells. Right: Clonogenic assay revealed the 

significantly lower colony formation capacity of siGULP1-treated cells compared to that of the 

controls. siCtrl, scrambled sequence of single interference control RNA; siGULP1, small 

interfering RNA targeting GULP1; GULP1_OE, GULP1 overexpression (B) Left: 

Subcutaneous xenograft tumor growth assay revealed that the GULP1-depleted Huh-7 cells 

exhibited significantly lower growth rates than the control cells. Right: Tumor weight 

differences in xenografts with GULP1 knockdown. (C) Left: Histopathological examination of 

tumor sections via hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) 

for GULP1, Ki67, and proliferating cell nuclear antigen (PCNA). Right: Inter-group 

comparative analysis of IHC staining intensity for GULP1, Ki67, and PCNA. (D) Scratch 

wound-healing assay revealed the effect of GULP1 on cell migration. Left: Representative 

images of wound closure in PLC/PRF/5 and Huh-7 cells at 24-h post-scratch. Right: 

Quantification of wound closure, showing significantly regulated migration of GULP1-

modulated cells. (E) Effects of GULP1 on cell invasion and sphere formation. Left: Invasion 

assay showed the altered invasiveness of PLC/PRF/5 and Huh-7 cells after GULP1 modulation. 

Right: Sphere formation assay revealed the significant changes in sphere formation and cell 

outgrowth upon altered GULP1 expression, with enlarged images highlighting the reduced 

lamellipodia (black arrows). (F) IHC images showing the expression patterns in HCC tissues 

derived from the subcutaneous xenografts injected with GULP1-depleted Huh7 cells. 
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Statistical significance was determined via unpaired t-tests for comparisons between two 

groups. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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Figure 5. Validation of GULP1 effects on epithelial–mesenchymal transition (EMT) and HCC 

recurrence in vivo. (A) Schematic representation of the experiment illustrating the orthotopic 

injection of GULP1-suppressed Hepa1-6 cells into the mouse liver. (B) IHC analysis showing 

the significant increase in GULP1 expression levels, particularly in the recurrence tumors 

compared to those in the normal liver and primary tumors. Magnifications: 200× and 400×. (C) 

Left: Representative images of the livers with tumor burden from different groups (siCtrl and 

siGULP1). Right: Corresponding bar graphs on the right show the calculated nodule volume 

and weight. (D) Top: IHC analysis of various markers in the NT, primary tumor (PT), and 

recurrent tumor (RT) tissues. Bottom: Quantification of stained GULP1, Ki-67, E-cadherin, 

vimentin, and vascular endothelial growth factor (VEGF) expression levels. Proliferation 

marker: Ki-67. Epithelial marker: E-cadherin. Mesenchymal marker: Vimentin. Angioinvasion 

marker: VEGF. (E) Lung metastasis model using ras-transformed NIH-3T3 cells with siCtrl or 

siGULP1 treatment. Left: Lung nodules (arrows) are significantly reduced in the siGULP1-

treated tissues. Right: H&E-stained images at 40× and 100× magnification show the dispersed 

HCC cells (arrows) in siCtrl-treated lungs, whereas siGULP1-treated lungs show improved 

morphology. Scale bars = 50 µm. (F) Analysis of RNA-seq data from the GSE164359 dataset 

revealed the higher GULP1 levels in RT samples than in the adjacent liver tissue (AL) and PT 

samples. Statistical significance was determined via unpaired t-tests for comparisons between 

two groups. Data are represented as the mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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Figure 6. Mechanistic role of GULP1 in β-catenin signaling pathway regulation in HCC. (A) 

Western blotting analysis revealed that β-catenin suppression considerably decreased the 

GULP1 protein levels in the HCC cell lines, Huh-7 and PLC/PRF/5. The cells were treated 

with the CTNNB1-targeting siRNA (siCTNNB1) or siCtrl. (B) Quantification of GULP1 

protein levels via enzyme-linked immunosorbent assay (ELISA) after β-catenin suppression in 

HCC cell lines. Data indicate the significant reduction in GULP1 expression upon β-catenin 

knockdown. (C) Immunofluorescence (IF) microscopy images illustrating β-catenin nuclear 

translocation influenced by GULP1 expression in Huh-7 and PLC/PRF/5 cells. siGULP1 or 

GULP1 overexpressing vector (GULP1_OE) treatment was performed, with nuclei stained 

with 4′, 6-diamidino-2-phenylindole (DAPI). (D) Quantitative representation of β-catenin 

translocation normalized to that of histone H3, corresponding to the microscopy findings. Data 

indicate that GULP1 modulates β-catenin localization. (E) ELISA of the modulation of ARF6-

GTP levels in response to changes in GULP1 levels under conditions where protein synthesis 

was inhibited by cycloheximide (CHX). Expression of ARF6-GTP was normalized to that of 

total ARF6. siGULP1 and GULP1_OE treatments showed that GULP1 stabilized ARF6-GTP. 

(F) Visualization of β-catenin nuclear translocation via IF microscopy (left), with 

accompanying quantitative analysis (right). Suppression of β-catenin localization upon ARF6 

knockdown using the ARF6-targeting siRNA (siARF6) supported the critical role of ARF6 in 

GULP1-mediated β-catenin translocation. (G) Luciferase activity in Huh7 cells transfected 

with the wild-type (WT) GULP1 promoter construct, first mutant (MT1) with a deletion from 

+1304 to +2330, and second mutant (MT2) with a sequence alteration at +1006 

(CCCGCATCCT). WT construct showed significantly higher activity than MT1 and MT2. (H) 

Chromatin immunoprecipitation (ChIP) assays showing the decreased binding affinity of β-

catenin to the GULP1 promoter region upon ARF6 knockdown in Huh-7 and PLC/PRF/5 cells. 
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(I) Modulation of TCF3 binding affinity to the GULP1 promoter region in response to changes 

in GULP1 expression. ChIP assay was performed to measure the binding activity. (J) 

Immunoprecipitation revealed β-catenin nuclear translocation and its enhanced interaction with 

the key adhesion molecules, N-cadherin and E-cadherin, following GULP1 modulation in Huh-

7 and PLC/PRF/5 cells. (K) ELISA showing the expression levels of downstream β-catenin 

targets, such as SRY-box transcription factor 2 (SOX9), c-Myc, and fibronectin, in response to 

altered GULP1 expression in Huh-7 and PLC/PRF/5 cells. These results indicate that GULP1 

influences the expression levels of these targets via its regulatory effects on β-catenin signaling. 

Unpaired t-tests were used to determine the statistical significance. *P < 0.05, **P < 0.01, and 

***P < 0.001. Data are represented as the mean ± SEM. 
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Figure 7. Schematic diagram of the GULP1–β-catenin co-regulatory mechanism in HCC. 

GULP1 functions as a crucial modulator in the β-catenin signaling axis in HCC that is critical 

for the stabilization of ARF6-GTP, which further influences the cellular distribution of β-

catenin. This stabilization facilitates β-catenin release and subsequent nuclear translocation, 

where it binds to TCF3 at the GULP1 promoter region, impacting gene transcription. 

Downstream effects of this binding include enhanced cell proliferation, EMT, and tumor 

recurrence, which contribute to liver tumorigenesis. 
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SUPPLEMENTARY METHODS 

Identification and validation of the risk score (RS) model for hepatocellular carcinoma 

(HCC) recurrence using TCGA LIHC  

Regularization was applied to create generalized models by applying a penalty to the 

estimated coefficients, reducing overfitting, and aiding variable selection. For the Elastic Net 

methods combining both lasso and ridge, the regularization parameter lambda (λ) was chosen 

using the “cv.glmnet” function with the training cohort based on the common differentially 

expressed genes (DEGs) through cross-validation. To ensure consistent results, the “set.seed()” 

function was used to fix the random number generation with the mixing parameter alpha (α) 

set to a default value of 0.5, allowing a more flexible alternative to the lasso procedure. A list 

of potential prognostic genes was obtained based on optimal lambda values. These potential 

prognostic genes, identified using Elastic Net regression by weighting the L1 and L2 penalty 

functions, were then entered into a multivariate Cox bidirectional stepwise regression model. 

Finally, a multivariate Cox regression model with regression coefficients was constructed based 

on the gene expression and patient survival data. 

The RS for each patient was calculated using the following formula:  

RS =  ∑ [Coefficiency (i)  × Expression
𝑛

𝑖
(𝑖)] 

The “coef” derived from the multivariate Cox regression represents the regression 

coefficient of the gene, and “expression” indicates the gene expression in terms of log2 (TPM 

+ 1). To calculate the RS for each patient, the gene expression level and the risk coefficient of 

each gene were used with the “predict” function from the “stats” package in R (version 4.2.3; 

R Foundation for Statistical Computing, Vienna, Austria). In TCGA cohort, patients were 

divided into high-risk and low-risk groups based on the optimal cut-off value of the RS derived 

from the “surv_cutpoint” function in the “survminer” package in R. This cut-off value was also 
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used to stratify patients into high- and low-risk groups. 

 

Differential expression analysis 

To compare gene expression between the non-recurrent and recurrent groups in each dataset, 

we applied different normalization methods based on the data type. The GSE14520 dataset, 

retrieved from the GEO microarray data, was normalized using the R limma package. For the 

Next Generation Sequencing (NGS) datasets (GSE114564 and TCGA LIHC), Quantile 

Normalization was used to ensure consistency in expression values. Differential expression 

analysis was then performed using the limma package on the normalized data. A statistical 

cutoff of P < 0.05 was set to identify DEGs between the recurrent (R) and non-recurrent (NR) 

groups. Since expression values between microarray and NGS data are represented differently, 

we converted the expression values to official gene symbols, enabling the identification of 

common DEGs across the three datasets. Additionally, to assess the clinical utility of the 

identified DEGs, decision curve analysis (DCA) was conducted using the rmda package and 

the stdca.R tool. This allowed for an evaluation of the net benefit of the nomogram across 

various threshold probabilities.1, 2 

 

GSEA (gene set enrichment analysis) for high-risk recurrence group 

To investigate the functions and pathways of DEGs between the high-risk and low-risk 

groups in the TCGA cohort, GSEA was performed using the clusterProfiler package in R 

(version 4.6.2). Gene set permutations were set at 1,000 for each analysis. Differences with an 

false discovery value (FDR) value of < 0.05 were considered statistically significant. 

 

Bulk and spatial transcriptomics data analysis 
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To analyze bulk RNA expression of GULP1 in normal vs adjacent HCC vs HCC tissue, 

expression data were downloaded from the GepLiver DB (GepLiver database: 

http://www.gepliver.org/) on June 2023.3 Spatial transcriptomics data were downloaded from 

Mendeley Data (skrx2fz79n).4 Data analysis was performed on R (version 4.2.3). Heatmap was 

plotted with ComplexHeatmap package (version 2.14). Boxplots and barplots were plotted with 

ggplot2 (version3.4.3) and ggparl (version 0.0.1). Spatial transcriptomics data was analyzed 

using Seurat (version 4.3.0).5 For bulk-level RNA-seq analysis, GULP1 expression in 

respective groups were tested for Normality with Shapiro-Wilk Normality Test. Comparison of 

non-normally distributed groups were performed with Wilcoxon Rank Sum or Kruskal-Wallis 

Rank Sum Test and Dunn’s test. Statistical significance was set at P < 0.05. 

 

Single-cell RNA sequencing (scRNA-seq) data analysis  

scRNA-seq data were downloaded from GepLiver DB, comprising a total of 17 scRNA-seq 

datasets 3. For downstream analysis, only human samples from HCC, adjacent HCC and normal 

tissues were selected. The Single-cell Atlas in Liver Cancer (scAtlasLC: 

https://scatlaslc.ccr.cancer.gov/) data were obtained from the NCBI Gene Expression Omnibus 

(GSE151530) 6. The classification of malignant and non-malignant hepatocytes was conducted 

using inferCNV (https://github.com/broadinstitute/inferCNV). To verify the presence of 

GULP1 in HCC, we extracted the count matrix for GULP1 using the Seurat R package (v.4.0.0) 

in R (v.4.3.1).5 Any instances with a count of 0 were categorized as 'GULP1 negative,' while 

those with a count of 1 or more were considered 'GULP1 positive.' Subsequently, we calculated 

the proportions of GULP1 positive cells by dividing the number of GULP1 positive cells by 

the total number of cells within each phenotype. To visualize the GULP1 transcript counts for 

each cell, we utilized ggplot2 (v.3.4.3) to display GULP1 expression according to phenotype.7 
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Group comparisons were conducted using a student’s t-test with ggpubr (v.0.6.0) 

(https://rpkgs.datanovia.com/ggpubr/), and statistical significance was determined with a 

threshold of P < 0.05. 

 

Cell culture and transfection 

Hep3B, Huh-7, PLC/PRF/5, SNU368, SNU398, SNU423 and Hepa1-6 cell lines were 

acquired from the Korean Cell Line Bank (KCLB, Seoul, South Korea), whereas ras-

transformed NIH-3T3 cells were purchased from American Type Culture Collection (ATCC, 

Bethesda, MD, USA). Cells were cultured in RPMI-1640 or DMEM (GenDEPOT, Barker, TX, 

USA) with 10% fetal bovine serum (Invitrogen, Waltham, MA, USA) and 100 units/mL 

penicillin-streptomycin (GenDEPOT). The THLE-2 immortalized normal hepatocytes were 

obtained from the American Type Culture Collection (ATCC) and cultured in bronchial 

epithelial cell growth medium (Lonza, Walkersville, MD, USA) supplemented with 10% fetal 

bovine serum, 5 ng/mL epidermal growth factor (Sigma-Aldrich, St. Louis, MO, USA), 70 

ng/mL phosphoethanolamine (Sigma-Aldrich), and antibiotics. Cells were grown in a 

humidified incubator with 5% CO2 at 37°C. 

For transfection, small interfering RNA molecules (siRNA) and negative control RNA 

duplexes were synthesized by Bioneer (Daejeon, South Korea) and Genolution (Seoul, South 

Korea). The RNA duplexes were transfected at a concentration of 100 nM. The sequences for 

siRNAs were as follows: Control siRNA, 5’-UUCUCCGAACGUGUCACGUUU-3’; GULP1 

siRNA, 5’-CUGCAUAAGGACUACUCUU-3’; CTNNB1 siRNA, 5’-

CCACAGCUCCUUCUCUGAGUGGUAA-3’; ARF6 siRNA, 5’-

GCGACCACUAUGAUAAUAU-3’. All transfection procedures were conducted with 

Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer’s 
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instructions. 

 

RNA extraction and (quantitative reverse transcription PCR) qRT-PCR  

Total RNA was isolated from frozen tissues and HCC cell lines using QIAzol reagent 

(Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Complementary 

DNA (cDNA) was synthesized from 500 ng of total RNA using 5X PrimeScript™ RT Master 

Mix (Takara Bio, Shiga, Japan). qRT-PCR was performed using amfiSure qGreen Q-PCR 

Master Mix (GenDEPOT) and monitored in real-time using a CFX Connect Real-Time PCR 

Detection System (Bio-Rad Laboratories, Hercules, CA, USA). The cycling conditions were 

as follows: 95°C for 2 min, 40 cycles of 95°C for 15 s, 58−60°C for 34 s, and 72°C for 30 s, 

followed by a dissociation stage at 95°C for 10 s, 65°C for 5 s, and 95°C for 5 s.  

 

Western blotting 

Proteins from whole cell lysates were prepared with radioinnumoprecipitation (RIPA) buffer 

containing Halt™ Protease Inhibitor Cocktail (Thermo Fisher Scientific, Waltham, MA, USA). 

Total proteins were separated by SDS-PAGE and transferred to a polyvinylidene difluoride 

(PVDF) membrane (Merck Millipore, Burlington, MA, USA). The membrane was blocked 

with blocking buffer (5% skim milk in Tris-buffered saline, 0.1% Tween-20) and incubated 

with the following antibodies: anti-GULP1 (Novus biologicals, Centennial, CO, USA), anti-

ARF6-GTP (NewEastBiosciences, PA, USA), anti-ARF6 (Cell Signaling Technology, Danvers, 

MA, USA), anti-active β-catenin (Cell Signaling Technology), anti-β-catenin (Cell Signaling 

Technology), anti-TCF3 (Cell Signaling Technology), anti-ß-actin (Abcam, Cambridge, UK), 

and anti-GAPDH (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Chemiluminescence 

signals were detected using Clarity™ Western ECL Substrate (Bio-Rad Laboratories) and 
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visualized using ChemiDoc™ (Bio-Rad Laboratories). The membrane band optical density 

was quantified using ImageJ software version 1.49 (Laboratory for Optical and Computational 

Instrumentation, Madison, WI, USA). 

 

Measurement of cell viability and proliferation 

Cells were seeded in 24-well plates at a density of 7 × 104 cells/well and transfected with 

scrambled sequence of single interference control RNA (siCtrl) or GULP1-targeting siRNA 

(siGULP1). After transfection, 50 μL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT; 1 mg/mL, Merck KGaA, Darmstadt, Germany) was added to each well of the 

plate and incubated for 1 h at 37°C in the dark. The supernatant was carefully aspirated, and 

500 μL of dimethyl sulfoxide (DMSO; Ducksan, Gwangju, South Korea) was added, following 

which optical density values at 560 nm were measured using a Promega Glomax microplate 

reader (Promega, Madison, Wisconsin, USA). 

To analyze cell proliferation, 5-bromo-2′-deoxyuridine (BrdU) incorporation was determined 

by estimating the DNA uptake of BrdU. Cells were plated into 24-well plates at 5 × 104 

cells/well for 24 h and measured using a BrdU kit (Roche, Indianapolis, IN, USA) according 

to the manufacturer’s instructions. 

 

Clonogenic proliferation assay 

Cells were transfected with siCtrl or siGULP1 in 60 mm dishes for 48 h, reseeded in 6-well 

plates (2, 4, or 6 × 103 cells/well), and incubated at 37°C in a CO2 incubator for 10 days. Cells 

were washed with phosphate-buffered saline (PBS) and fixed with 1% paraformaldehyde for 

30 min at room temperature. The fixed cells were stained with 0.5% crystal violet overnight at 

room temperature, and colonies were counted using ImageJ software. 
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Wound healing assay 

HCC cells were transfected with siCtrl or siGULP1 in 60 mm dishes for 48 h, reseeded in 6-

well plates (1.5 × 106 cells/well), and incubated at 37°C in a CO2 incubator. After overnight 

incubation, cell monolayers were scraped with a sterile 1000 μL micropipette tip. Photos of the 

scrape line were taken at 0 and 24 or 48 h. Each experiment was repeated three times. The 

image analysis was performed via ImageJ software. 

 

Transwell assay 

Cell migration was assessed using Transwell chambers (Corning, New York, USA) without 

Matrigel, while invasion was measured using Transwell chambers coated with 50 μL of 

Matrigel (Corning); 5 × 104 cells were serum-starved for 12 h, resuspended in 100 μL serum-

free medium and added to the upper compartment of the chamber, while the bottom chamber 

was filled with medium supplemented with 10% fetal bovine serum (FBS). After incubation at 

37°C in a 5% CO2 humidified atmosphere for 24 h, the chambers were analyzed for migration 

and invasion. The experiments were independently repeated thrice. 

 

Three-dimensional spheroid culture and invasion assays 

To form spheroids using PLC/PRF/5 and Huh-7 cells, a Matrigel-based 3D sandwich culture 

system was employed. Initially, sterile 13 mm coverslips treated with HNO3 were placed in 

each well of a 24-well plate (Greiner Bio-One GmbH, Kremsmünster, Austria). The plate was 

chilled and kept on a cooling pad to maintain a cool temperature during the application of 

Matrigel, ensuring even polymerization of the Matrigel across the plate. For optimization of 

Matrigel concentration, Matrigel was diluted in ice-cold serum-free RPMI-1640 media (Merck 
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KGaA), with concentrations of 3.5, 5.0, and 6.5 mg/mL. The Matrigel solutions (50 μL) were 

drop-casted onto the coverslips, and the plates were incubated at 37°C with 5% CO2 for 1 h to 

allow for Matrigel polymerization. PLC/PRF/5 and Huh-7 cells were then trypsinized, and 500 

cells were suspended in 30 μL of RPMI-1640 media supplemented with 10% FBS, 

penicillin/streptomycin, and L-glutamine. The cell suspension was seeded onto each coverslip 

on top of the Matrigel and incubated for 1 h to allow for cell attachment in an incubator at 37°C 

with 5% CO2. After removing the excess media, a top layer of 30 μL of Matrigel (5.0 mg/mL) 

was applied and allowed to polymerize for an additional hour in the incubator. The wells were 

subsequently filled with 600 μL of RPMI-1640media, and the plates were returned to the 

incubator. The morphology of the colonies was evaluated using an EVOS 5000 microscopy 

system (Invitrogen). 

 

Animal experiments 

Five-week-old female BALB/c nude mice, obtained from ORIENT BIO Inc. (Seongnam, 

Korea), and six-week-old athymic female nude mice, purchased from Koatech (Pyeongtaek, 

South Korea), were used. The mice were housed in individually ventilated cages in a pathogen-

free environment and given one week to acclimate before being used in the study. 

The orthotopic model was prepared by transfecting mouse Hepa1-6 cells with either siGULP1 

or siCtrl. After transfection, 2 × 106 of these cells were suspended in 10 μL of a Matrigel 

mixture (Corning) and serum-free DMEM. The cell mixture was then injected orthotopically 

into the liver of five-week-old female BALB/c nude mice. The procedure involved making a 

small incision in the abdomen under anesthesia, exposing the liver, and injecting the cells 

directly into the liver tissue. The incision was then closed using surgical sutures. The mice were 

monitored post-operation for any signs of distress or complications. The development and 
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growth of the tumor in the liver were regularly tracked using non-invasive imaging techniques. 

Tumors were allowed to grow until they reached a size where the mice showed signs of 

discomfort or until it was ethically appropriate to euthanize them for further examination of the 

tumor. 

In the subcutaneous xenograft model, after siGULP1 or siCtrl transfection in Huh-7 cells, 5 

× 105 cells in 0.1 mL volume of Matrigel/serum-free DMEM mix were injected subcutaneously 

into the flanks of BALB/c nude mice. Tumor diameter was measured three times a week for 19 

days in the tumor-bearing mice using a digital caliper. The tumor volumes were calculated 

according to the formula 0.52 × length × width2. The mice were humanely euthanized on day 

19 using carbon dioxide. Post-euthanasia confirmation was carried out by checking for the 

absence of reflexes. Tumors were removed for weighting and histological analysis. The tumor 

tissues were collected after removal, immediately flash-frozen in liquid nitrogen for RNA and 

protein extraction and placed in 10% neutral buffered formalin for Hematoxylin and eosin 

(H&E) staining and Immunohistochemistry (IHC) analysis. 

For the lung metastasis assay, a tail vein injection model was used. ras-transformed NIH-

3T3 cells transfected with siGULP1 or siCtrl (3 × 105 cells) were mixed with 0.2 mL serum-

free DMEM and injected into the athymic nude mice through tail veins using a 29-gauge BD 

Ultra-Fine Needle insulin syringe. The mice were sacrificed 14 days after cell inoculation, and 

their lungs were collected to assess the number of peritoneal nodules. The summary of the in 

vivo experiments can be found in Supplementary Table 8. 

 

IHC 

Tumors were harvested, fixed in 10% neutral buffered formalin, and embedded in paraffin 

blocks before being cut into 5-μm sections and deparaffinized. One section was stained with 
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H&E and another was evaluated using IHC.  

For IHC, sections were deparaffinized in xylene, hydrated in graded alcohol, and incubated 

with primary antibodies overnight at 4°C. After being washed three times, the sections were 

incubated with secondary antibodies for 1 h and then a peroxidase substrate until the desired 

stain intensity developed (Supplementary Table 9). 

 

Immunofluorescence (IF) 

Nuclear translocation of β-catenin was identified via staining for IF using anti-β-catenin 

antibody (1:100, Cell Signaling Technology). Cells were fixed in 3% paraformaldehyde for 20 

min at room temperature and permeabilized in 0.5% Triton X-100 on ice for 7 min. The cells 

were washed in PBS with 0.5% normal goat serum and incubated with anti-β-catenin antibody. 

AlexaFluor-488-conjugated rabbit IgG antibody was used as required. Nuclear DNA was 

stained with 4′, 6-diamidino-2-phenylindole (DAPI), and cells were analyzed using a EVOS 

M5000 fluorescent microscope (Invitrogen) to visualize the endogenous level of proteins under 

study. 

 

Dual Luciferase Reporter Assay 

To investigate the role of TCF3 in the regulation of GULP1 gene transcription, specific 

promoter regions of the GULP1 gene were cloned into the pGL4.10[luc2] luciferase reporter 

vector (Promega). The GULP1 promoter fragment spanning nucleotides +1304 to +2622 

relative to the transcription start site was amplified by PCR and inserted into the pGL4.10 

vector using NheI and HindIII restriction sites. The deletion mutant, which lacked the region 

from +1304 to +2330, was created by PCR amplification of the remaining promoter segments 

and subsequent ligation into the vector. A point mutation was introduced at position +1006, 
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altering the sequence to CCCGCATCCT through site-directed mutagenesis utilizing mutagenic 

primers. All constructs were verified via Sanger sequencing to confirm the presence of desired 

mutations and the integrity of the sequences. Huh7 and PLC/PRF/5 cells, cultured in RPMI-

1640 supplemented with 10% FBS and 1% penicillin-streptomycin, were seeded in 24-well 

plates at a density of 1 × 105 cells per well. Transient transfections were performed using 

Lipofectamine 2000 (Invitrogen), where each well received 500 ng of the respective pGL4.10 

construct (wild-type, deletion, or point mutation) and 50 ng of the pGL4.74[hRluc/TK] vector 

(Renilla luciferase control vector) to normalize for transfection efficiency. 

48 hours post-transfection, cells were lysed with Passive Lysis Buffer (Promega), and 

luciferase activity was assessed using the Dual-Luciferase Reporter Assay System (Promega) 

following the manufacturer's instructions. Firefly luciferase activity from the pGL4.10 

constructs was normalized to Renilla luciferase activity from the pGL4.74 control vector to 

control for variations in transfection efficiency. Relative luciferase activity, calculated as the 

ratio of Firefly to Renilla luciferase signals, was used to determine the impact of TCF3 on 

GULP1 promoter activity. Comparisons were made between the wild-type promoter and the 

mutated constructs (both deletion and point mutation) to evaluate TCF3's regulatory effect. 

Each experiment was conducted in triplicate, and data are presented as mean ± standard 

deviation. The sequences for primers were as follows: Wild type (+1304 ~ +2622) forward (F), 

5’-GCGGCTAGCGTTCTCTCTATTCTGAGGCTCCTG-3’; reverse (R), 5’-

GCGAAGCTTTGAGAATACGTAATTGAATTATTCAATTTA-3’; Mutant 1 (Del +1304 ~ 

+2330) F, 5’-GCGGCTAGCGAGTGCAGTTGGATATGACCGAGG-3’; R, 5’-

GCGAAGCTTTGAGAATACGTAATTGAATTATTCAATTTA-3’; Mutant 2 (Site direct; 

+1006 ~ +1014; CAAAAAAAT > CCCGCATCCT) F, 5’-

GTGGCTAAGATCAGTCTTCTTGGCCCGCATCCTAAAGAAAAA-3’; R, 5’-
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TTTTTCTTTTAGGATGCGGGCCAAGAAGACTGATCTTAGCCAC-3’. 

 

Lumit immunoassay 

To investigate the protein-protein interaction between GULP1 and ARF6, we employed the 

Lumit Immunoassay Kit from Promega. Following the manufacturer's instructions, we labeled 

GULP1 antibody with Sm-BiT and ARF6 antibody with Lg-BiT using the HaloTag technology 

provided in the kit. The labeling process involved a two-step reaction: first, the amine-reactive 

HaloTag Succinimidyl Ester (O4) Ligand was conjugated to primary amines on lysine residues 

of the antibodies, and then the labeled antibodies were incubated with HaloTag-Sm-BiT or 

HaloTag-Lg-BiT fusion proteins to create covalent conjugates. After labeling, we performed 

the homogeneous bioluminescent immunoassay in a 96-well plate. The labeled antibodies were 

mixed with cell lysates containing the target proteins, and upon binding of GULP1 and ARF6, 

the Sm-BiT and Lg-BiT subunits came into close proximity, reconstituting the NanoBiT 

enzyme (Supplementary Fig. S7A). We then added the Lumit Detection Reagent, which 

contains the substrate furimazine, and measured the resulting luminescence signal using a 

plate-reading luminometer. The intensity of the luminescent signal was proportional to the 

extent of GULP1-ARF6 interaction, allowing us to quantitatively assess their binding capacity. 

 

Co-immunoprecipitation (co-IP) 

Transfected cells were washed with PBS and lysed at 4°C using lysis buffer composed of 

PBS (pH 7.2) containing 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 10 mmol/L NaF, 

1.0 mmol/L NaVO4, and a 1.0% protease inhibitor cocktail (Sigma-Aldrich), following a 

previously described protocol.8 Equal protein aliquots (1.0 mg) were subjected to 

immunoprecipitation with 2.0 μg of specific antibodies against β-catenin (Cell Signaling 
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Technology) or GULP1, using protein A/G-agarose (Santa Cruz Biotechnology). The 

immunoprecipitated proteins were separated on 10% SDS-polyacrylamide gels and transferred 

to polyvinylidene fluoride membranes (Bio-Rad Laboratories). After blocking with PBS 

containing 0.1% Tween 20 (PBS-T) and 5% non-fat dry milk (Sigma-Aldrich) for 1 h, the 

membranes were incubated with antibodies against anti-β-catenin (Cell Signaling Technology), 

anti-E-cadherin (Cell Signaling Technology), anti-N-cadherin (Cell Signaling Technology), 

anti-GULP1 (Santa Cruz Biotechnology), and anti-ARF6 (Cell Signaling Technology) at a 

dilution of 1:1,000. Following washing with PBS-T, the membranes were incubated with 

horseradish peroxidase-conjugated anti-mouse (Sigma-Aldrich) or anti-rabbit immunoglobulin 

G (IgG) antibody (Sigma-Aldrich) at a dilution of 1:5,000 for 1 h at room temperature. Protein 

bands were visualized using a luminol-based enhanced chemiluminescence plus Western 

blotting detection system (Amersham Biosciences, Buckinghamshire, UK). The identification 

of immunoreactive bands was achieved by co-migration with pre-stained protein size markers 

(Fermentas, Glen Burnie, MD, USA).  

 

Chromatin immunoprecipitation (ChIP)  

ChIP assays were performed using the Thermo Scientific Pierce Agarose ChIP kit (Thermo 

Fisher Scientific). Briefly, cells were cross-linked with 1% formaldehyde and collected into 

lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.0, 1× protease inhibitor mixture). 

Cell lysates were digested with micrococcal nuclease, followed by immunoprecipitating with 

anti-TCF3 (Cell Signaling Technology) or anti-β-catenin (Cell Signaling Technology) antibody. 

Immunoprecipitation with a normal rabbit IgG (Thermo Fisher Scientific) was used as a 

negative control. After incubation with the protein A/G Plus agarose resin, immunoprecipitants 

were washed and then heated at 65°C for 1.5 h to reverse the formaldehyde cross-linking. DNA 
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fragments were purified with the DNA clean-up column and reagents included in the Pierce 

agarose ChIP kit. The expression of gene promoter and enhancer were quantified by SYBR 

green-based real-time quantitative PCR. The primer sequence for GULP1 promoter follows; 

Forward 5’-ACACCACAGTACCAGATTCAGT-3’ and Reverse 5’-

GTCAGTTCAGGGAAGGGGAA-3’ 

 

Enzyme-linked immunosorbent assay (ELISA) 

Immediately after sample collection, the serum extracted from the blood of both healthy 

individuals and liver disease patients was stored at -80°C. For the assay, the samples were 

retrieved from storage and carefully thawed at 4°C. Following the thawing process, we 

measured the concentration of the GULP1 protein within the serum of each cohort. The assay 

was conducted using an ELISA kit (HUFI04000; Assay Genie, Ireland) strictly in accordance 

with the manufacturer's instructions. Serum samples were diluted 1:10 before measurement to 

ensure optimal detection within the assay's range. The assay's performance was validated with 

a control curve yielding an R-squared value of 0.9967, indicating excellent linearity. The mean 

optical density (OD) of the blank was 0.141 with a standard deviation of 0.005, demonstrating 

low background and high precision. The Hillslope of 0.8283 suggested appropriate assay 

kinetics. Notably, the GULP1 ELISA kit boasted a remarkably low Limit of Detection (LOD) 

of 0.02 pg/mL, ensuring high sensitivity for accurate protein quantification. 

Protein levels were quantified by indirect ELISA and the plates coated with cell lysates 

diluted in carbonate buffer (34 mM Na2CO3, 100 mM NaHCO3, pH 9.5) were incubated at 4 °C 

overnight. Washed with PBS-T thrice and blocked with 1% Bovine Serum Albumin (BSA, 

Sigma-aldrich) 1 h at RT. Washed and incubated at 37 °C for 1 h with 100 µL of anti-GULP1 

(Novus biologicals), anti-ARF6-GTP (NewEastBiosciences), anti-ARF6, anti-active β-catenin, 
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anti-β-catenin, anti-SOX9, anti-c-Myc, anti-Fibronectin (Cell Signaling Technology), and anti-

GAPDH (Santa Cruz Biotechnology) antibody, respectively. Washed and incubated at 37 °C 

for 1 h with 100 µL of rabbit anti-mice and goat anti-rabbit (1:10000) IgG/HRP conjugate, 

respectively. Washed and developed with 3,3',5,5'-Tetramethylbenzidine (TMB) solution for 

20 min. 50 µL of stop solution (1 N H2SO4) was added per well and absorbance was measured 

at 450 nm on ELISA reader. Protein levels were normalized to the GAPDH control for each 

plate and samples.  

 

Statistical Analysis 

The statistical significance of the differences between two groups was assessed via the paired 

Student’s t-test or unpaired Welch’s t-test using GraphPad Prism (version 9.0; GraphPad 

Software, San Diego, CA, USA). For multiple comparisons among three groups, one-way 

analysis of variance (ANOVA) with Tukey’s post-hoc analysis was used. Kaplan–Meier 

survival curves were constructed to assess the significance of the prognostic power between 

the two patient groups. Significant differences between survival curves were determined using 

the log-rank test. Receiver operating characteristics (ROC) and Cox proportional hazard 

regression analyses were performed using IBM SPSS software (IBM SPSS Statistics for 

Windows, version 22.0, released 2013; Armonk, NY, USA). The cut-off values for the 

diagnosis of liver cancer were established at 20 ng/mL for serum α-fetoprotein (AFP) and 340 

pg/mL for serum GULP1. All experiments were performed at least thrice. Statistical 

significance was set at P < 0.05. 

 

Ethics approval and consent to participate 

All experiments were performed in accordance with the Declaration of Helsinki, and the 
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study was approved by the Institutional Review Board of Ajou University Hospital (AJIRB-

BMR-KSP-16-365, AJIRB-BMR-SMP-17-189, AJOUIRB-KSP-2019-417, AJOUIRB-EX-

2022-389 and AJOUIRB-EX-2024-332). Anonymous serum samples and clinical data were 

provided by the Ajou Human Bio-Resource Bank; the requirement for informed consent was 

waived. 

All animals were cared for in accordance with the Guide for the Care and Use of Laboratory 

Animals and experiments were approved by the Ethics Committee for Laboratory Animal 

Research Center of Ajou University Medical Center (IACUC_2022-0049). 
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Supplementary Table 1. Clinicopathological characteristics of 81 patients who underwent 

hepatectomy. 

Variables Total cohort (n=81) 

Age (years), mean ± SD 56.0 ± 10.3 

Male sex, n (%) 64 (79) 

AST, IU/mL 50.6 ± 76.1 

ALT, IU/mL 44.9 ± 53.6 

Platelet, x109/L 176.0 ± 64.1 

AFP (ng/mL), mean ± SD 2523.8 ± 8092.2 

Albumin (g/L), mean ± SD 4.5 ± 0.7 

Bilirubin (mg/dL), mean ± SD 0.8 ± 1.0 

Sodium (mmol/L), mean ± SD 106.5 ± 59.4 

Etiology, n (%)  

 HBV 76 (93.8) 

 HCV 5 (6.2) 

 Alcohol 1 (1.2) 

 Others 0 (0) 

BCLC stage, n (%)  

0 34 (42.0) 

A 27 (33.3) 

B 2 (2.5) 

C 18 (22.2) 

D 0 (0) 

Modified UICC stage, n (%)  

I 22 (27.2) 

II 31 (38.3) 

III 22 (27.2) 

IV 6 (7.4) 

Recurrence, n (%) 24 (29.6) 

Vascular invasion, n (%) 40 (49.4) 

AST, aspartate aminotransferase; ALT, alanine aminotransferase; AFP, α-fetoprotein; HBV, 

hepatitis B virus; HCV, hepatitis C virus; BCLC, Barcelona Clinic Liver Cancer staging system;  

UICC, The Union for International Cancer Control. 
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Supplementary Table 2. Clinicopathological characteristics of 256 patients for evaluation of 

GULP1 as a blood marker. 

Variables 
Total cohort (n=256) 

NL (n=30) CH (n=34) LC (n=33) HCC (n=159) 

Age (years), mean ± 

SD 
34.6 ± 7.5 46.5 ± 10.7 53.1 ± 10.5 55.8 ± 9.2 

Male sex, n (%) 4 (13.3) 20 (58.8) 20 (60.6) 119 (82.1) 

AST, IU/mL 16.6 ± 3.7 54.3 ± 49.1 80.7 ± 99.1 55.3 ± 63.9 

ALT, IU/mL 13.7 ± 7.8 65.7 ± 72.9 77.0 ± 99.4 42.2 ± 38.7 

Platelet, x109/L 294.7 ± 35.8 175.2 ± 52.1 129.4 ± 77.8 163.3 ± 73.8 

AFP (ng/mL), mean ± 

SD 
1.7 ± 0.7 26.4 ± 32.4 65.8 ± 133.0 

2433.5 ± 

10224.8 

Albumin (g/L), mean ± 

SD 
 4.4 ± 0.9 4.0 ± 0.5 4.3 ± 0.5 

Bilirubin (mg/dL), 

mean ± SD 
 0.8 ± 0.4 1.1 ± 1.0 0.9 ± 2.5 

INR, mean ± SD  0.4 ± 0.6 1.0 ± 0.5 1.1 ± 0.1 

Etiology, n (%)     

 HBV    132 (91.0) 

 HCV    11 (7.6) 

 Alcohol    2 (1.4) 

 Others    0 (0) 

Modified UICC stage, 

n (%) 
    

I    43 (29.7) 

II    74 (51.0) 

III    18 (12.4) 

IV    10 (12.4) 

Vascular invasion, n 

(%) 
   36 (24.8) 

Recurrence, n (%)       66 (45.5) 

AST, aspartate aminotransferase; ALT, alanine aminotransferase; AFP, α-fetoprotein; HBV, 

hepatitis B virus; HCV, hepatitis C virus; INR, international normalized ratio; UICC, The 

Union for International Cancer Control; NL, normal liver; CH, chronic hepatitis; LC, liver 

cirrhosis; HCC, hepatocellular carcinoma.
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Supplementary Table 3. Clinicopathological characteristics of 302 patients for the etiological 

evaluation of GULP1. 

Variables 

Total cohort (n=302) 

NL        

(n=32) 

LC           

(n=120) 

HCC            

(n=120) 

CCC                   

(n=8) 

cHCC-CCC               

(n=22) 

Age (years), mean ± 

SD 

33.5 ± 

8.3 

60.1 ± 

10.5 
66 ± 10.7 

65.4 ± 

10.6 
59.8 ± 12.9 

Male sex, n (%) 4 (13) 70 (58) 92 (77) 6 (75) 19 (86) 

Etiology, n (%)           

  HBV   30 (25) 30 (25)     

  HCV   30 (25) 30 (25)     

  Alcohol   30 (25) 30 (25)     

  MASH   30 (25)       

  MASH / unkown     30 (25)     

AST, U/L 
16.7 ± 

3.9 

50.7 ± 

57.2 
49.9 ± 40.2 21.8 ± 3.2 51 ± 58.1 

ALT, U/L 
13.4 ± 

6.4 
40.1 ± 59 42.4 ± 63.6 19.4 ± 6.6 61.8 ± 105 

Platelet, x109/L 
247 ± 

43.2 

144.8 ± 

65.1 
170 ± 84.6 230.6 ± 97 190.4 ± 68.2 

Albumin (g/dL), mean 

± SD 
  4.6 ± 3.7 4.2 ± 0.6 4.6 ± 0.3 4.5 ± 0.2 

Total bilirubin 

(mg/dL), mean ± SD 
  1.1 ± 1.9 1 ± 1.6 0.7 ± 0.4 0.9 ± 1.7 

AFP (ng/mL), mean ± 

SD 
2.1 ± 1.4 24 ± 75.9 

2366.5 ± 

9463.8 
2.3 ± 0.6 

2840.4 ± 

12583.9 

AST, aspartate aminotransferase; ALT, alanine aminotransferase AFP, α-fetoprotein; HBV, 

hepatitis B virus; HCV, hepatitis C virus; MASH, metabolic dysfunction-associated 

steatohepatitis; NL, normal liver; LC, liver cirrhosis; HCC, hepatocellular carcinoma; CCC, 

cholangiocarcinoma; cHCC-CCC, combined hepatocellular carcinoma and 

cholangiocarcinoma. 
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Supplementary Table 4. Baseline characteristics of the patients in three cohort. 

Variables 

Number (%) of Participants 

GSE14520 GSE114564 TCGA LIHC 

(n=172) (n=55) (n=212) 

Age, mean (SD), year 50.88(10.75) 54.98(9.02) 59.13(13.22) 

Sex, male 148(86.04%) 47(85.45%) 141(66.50%) 

Platelet count, mean (SD), 109/L  104.29(72.67) 216.22(75.10) 

Total bilirubin, mean (SD), mg/dL  2.84(3.06) 0.94(1.66) 

Creatinine, mean (SD), mg/dL  1.22(1.29) 2.60(10.83) 

Serum AFP, mean (SD), ng/mL  3874(23780.15) 19922(160629.4) 

Serum AFP >300 ng/ml 81(47.09%)   

Vascular invasion, micro-macro  19(34.54%) 66(31.13%) 

Histologic grade, G3-G4  9(16.36%) 83(39.15%) 

Child Pugh, B-C  23(41.81%) 11(5.18 %) 

AJCC, III-IV  8(14.54%) 59(27.83 %) 

Recurrence status (NR/R) 89/83 31/24 48/164 

SD, standard deviation; AFP, α-fetoprotein; AJCC, The American Joint Committee on Cancer; 

NR, non-recurrence; R, recurrence.  
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Supplementary Table 5. The lambda values for the 50 selected genes in Elastic Net Cox 

Regression analysis. 

* Supplementary Table 5 was submitted as a separate Excel file. 
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Supplementary Table 6. The regression coefficients of 15-gene signatures based on the 

optimal lambda value. 

Genes Coefficiency 

GULP1 0.03846 

LCAT -0.0279 

PPAT 0.09907 

LPXN -0.0423 

NOP56 0.17944 

CD4  -0.01382 

ZC2HC1A 0.06148 

PPIA 0.27442 

CST7 -0.01075 

PRKCQ -0.0344 

PHF20 0.0052 

RAB23 0.00434 

PCDHB6 0.01753 

CXCR6 -0.07688 

SLC4A10 -0.0375 
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Supplementary Table 7. Cox regression analyses of the variables associated with disease free 

survival in TCGA cohort. 

  Univariate Multivariate 

Variables Coefficiency HR (95% CI) P-value Coefficiency HR (95% CI) P-value 

Age -0.0005 
0.99 

(0.988-1.011) 
0.922    

Sex  

(male) 
0.0586 

1.06 

(0.764-1.471) 
0.726    

Platelet count 

(109/L) 
5.15e-07 

1.00 

(1.00-1.00) 
0.672    

Total bilirubin 

(mg/dL) 
0.0356 

1.04 

(0.954-1.125) 
0.398    

Creatinine 

(mg/dL) 
0.0004 

1.00 

(0.986 -

1.015) 

0.954    

Serum AFP 

(ng/mL) 
-1.16e-06 

1.00 

(1.00-1.00) 
0.259    

Vascular invasion 0.4824 
1.62 

(1.168-2.246) 
0.004 0.2548 

1.29  

(0.835-1.994) 
0.25126 

Histologic grade 

 (3-4 vs. 1-2) 
0.0513 

1.05 

(0.765-1.448) 
0.753    

Child Pugh  

(B, C vs. A) 
0.6144 

1.85 

(0.978 -

3.494) 

0.059    

AJCC 

(III-IV vs. I-II) 
0.7935 

2.21 

(1.535-3.185) 
2.03e-05 0.2216 

1.25  

(0.825-1.888) 
0.294 

15-gene RS 1.0000 
2.72 

(2.146-3.443) 
2e-16 0.7341 

2.08  

(1.311-3.313) 
0.002 

Du et al. RS  

(7-genes) 
0.7111 

2.04 

(1.704-2.433) 
5.12e-15 0.3797 

1.46  

(1.147-1.862) 
0.002 

HR, hazard ratio; AFP, α-fetoprotein; AJCC, The American Joint Committee on Cancer; RS, 

risk score. 
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Supplementary Table 8. The experimental designs for the in vivo studies. 

Model 

(mouse count 

per group) 

Cell number 

(Cell line) 

Injection volume 

(Matrigel mixing ratio) 
Detail 

(experimental parameters) 

Subcutaneous  

xenograft 

model 

(n = 4) 

5 × 105 

(Huh-7) 

100 μL 

(Matrigel at 20% v/v) 

Sacrificed 19 day after cell 

injection.  

(Tumor volume, body weight, 

tumor weight, tumor IHC) 

Tail vein 

model 

(n = 5) 

3 × 105 

(ras-NIH-3T3) 
200 μL 

Sacrificed 14 day after cell 

injection.  

(Number of nodules, body 

weight, lung H&E) 

Orthotopic 

xenograft 

model 

(n = 4) 

2 × 106 

(Hepa1-6) 

10 μL 

(Matrigel at 50% v/v) 

Tumor resection performed 

18 days after cell injection 

and sacrificed 14 days after 

tumor resection.  

(Nodule volume, nodule 

weight, tumor IHC) 
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Supplementary Table 9. The list of primary antibodies for IHC staining. 

Antibodies Species Dilution Manufacturer 

GULP1 Rabbit 1:200 Novus biologicals 

Ki-67 Rabbit 1:500 Abcam 

PCNA Mouse 1:10000 Abcam 

β-catenin Rabbit 1:200 Cell Signaling Technology 

SLUG Rabbit 1:100 Cell signaling Technology 

E-cadherin Mouse 1:100 BD bioscience 

Vimentin Rabbit 1:500 GeneTex 

ZO-1 Mouse 1:200 Thermo Fisher Scientific 

Fibronectin Mouse 1:100 Santa Cruz Biotechnology 

CD31 Rabbit 1:100 Abcam 

VEGF Mouse 1:100 Santa Cruz Biotechnology 
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Supplementary Figure 1. Evaluating predictive models for hepatocellular carcinoma (HCC) 

recurrence and their clinical impact. (A) Decision curve analysis (DCA) comparing the net 

benefits of the 15-gene risk score (RS) model and the existing 7-gene model by Du et al. across 

different threshold probabilities in three datasets, indicating that the 15-gene RS model 

outperforms the 7-gene model. (B) Biological and functional pathway analysis between the 

low- and high-risk groups performed using gene set enrichment analysis (GSEA). 
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Supplementary Figure 2. Expression levels and diagnostic performance of GULP1 and other 

genes. Box plots and ROC curves for the 15 genes identified in the recurrence risk score (RS) 

model, comparing expression levels between non-recurrence (NR) and recurrence (R) groups. 

Among these genes, GULP1 showed the highest expression in the R group and demonstrates 

superior sensitivity and specificity for recurrence diagnosis, as indicated by the ROC analysis. 
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Supplementary Figure 3. GULP1 as an indicator for HCC aggressiveness. (A) The expression 

level of GULP1 was analyzed across a wide array of cancer types in the TCGA dataset. GULP1 

is significantly overexpressed in HCC compared to its expression in other cancer types, where 

it appears predominantly downregulated. The data points for individual samples are plotted, 

with median expression levels indicated by horizontal black lines. TPM, transcripts per million. 

(B) Spatial transcriptomic analysis. Left: representative spatial transcriptomic spots colored by 
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non-malignant (yellow) and malignant (purple) hepatocytes from tumor tissues. Right: GULP1 

expression in spatial sections. (C) UMAP plot displaying cell type clusters across various liver 

cancer-related datasets, with distinct cell types marked by different colors, including 

hepatocytes, T cells, B cells, macrophages, endothelial cells, and fibroblasts. (D) Single-cell 

transcriptomic data (GSE151530) revealing GULP1 expression across various cell types, 

including T cells, TAMs (tumor-associated macrophages), hepatocytes, TECs (tumor 

endothelial cells), Tregs (regulatory T cells), B cells, and MDSCs (myeloid-derived suppressor 

cells). The bar chart on the right confirms that hepatocytes predominantly express GULP1. (E) 

UMAP-based sub-clustering of 18,539 hepatocytes into nine groups (C1–C9). (F) Hallmark 

pathway enrichment analysis (MSigDB Hallmark 2020) ranking gene sets enriched in GULP1 

(+) samples. (G) Summary table of selected hallmark pathways with corresponding normalized 

enrichment scores (NES) and p-values, indicating the statistical significance of GULP1-linked 

oncogenic signaling in HCC. 
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Supplementary Figure 4. GULP1 expression correlates with poor recurrence-free survival 

(RFS) in HCC and is elevated in recurrent tissues. (A-C) Kaplan–Meier curves showing RFS 

for HCC patients, stratified by high (purple) and low (gray) GULP1 expression levels. Patients 

with high GULP1 expression demonstrate significantly poorer RFS outcomes. Analysis was 

conducted across three datasets: (A) GSE14520, (B) GSE114564, and (C) TCGA LIHC, all 

providing recurrence information. (D) Comparative mRNA expression analysis of GULP1 

using qRT-PCR in 81 pairs of normal and HCC liver tissue samples, demonstrating 

significantly higher expression in HCC tissues. The x-axis numbers represent the unique patient 

IDs. (E) qRT-PCR analysis in a subset of 24 patients with recurrent HCC, showing elevated 

levels of GULP1 in recurrent tumor tissues compared to matched adjacent non-tumor (NT) 

tissues. The x-axis numbers represent the unique patient IDs. 
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Supplementary Figure 5. GULP1 expression and diagnostic performance across liver disease 

etiologies. (A) Hepatitis B virus (HBV) cohort: Serum GULP1 measurements in liver cirrhosis 

(LC; n = 30) and HCC (n = 30). GULP1 levels were notably higher in HCC than LC (P < 

0.001), yielding an AUC of 0.871, which exceeds that of AFP (AUC = 0.707; P = 0.006). NL 

(normal liver) refers to healthy control samples included for baseline comparison. (B) Hepatitis 

C virus (HCV) cohort: Serum GULP1 levels were assessed in LC (n = 30) versus HCC (n = 

30). GULP1 was substantially upregulated in HCC relative to LC (P < 0.001), achieving an 

AUC of 0.821 compared to AFP’s 0.801 (P = 0.729). (C) Alcoholic group: Serum GULP1 
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levels in alcoholic LC (n = 30) and alcoholic HCC (n = 30). GULP1 expression was 

significantly elevated in HCC versus LC (P < 0.001), with an AUC of 0.836 surpassing AFP’s 

0.810 (P = 0.716). (D) Metabolic dysfunction-associated steatohepatitis (MASH) group: Serum 

GULP1 levels in LC (n = 30) compared to HCC (n = 30). GULP1 was markedly increased in 

HCC (P < 0.001), generating an AUC of 0.890, higher than AFP’s 0.810 (P = 0.120). (E) 

Comparison of serum GULP1 concentrations among normal liver (NL), liver cirrhosis (LC), 

hepatocellular carcinoma (HCC), and non-HCC liver tumors (Non-HCC LT). Statistical 

significance was determined via one-way ANOVA followed by multiple comparison tests. *P 

< 0.05, **P < 0.01, and ***P < 0.001. Data are represented as the mean ± standard deviation 

(SD). (F) Left: Non-tumor versus non–HCC liver tumor comparison: Serum GULP1 levels for 

non-tumor samples (NL and LC, n = 145) and non–HCC liver tumors (n = 30). GULP1 was 

significantly higher in non–HCC liver tumors compared to non-tumor samples (P < 0.001), 

providing an AUC of 0.833, which exceeds AFP’s 0.540 (P < 0.0001). Right: Serum GULP1 

levels and ROC analysis for LC (n = 115) and non-HCC liver tumors (n = 30). GULP1 levels 

were significantly higher in non-HCC liver tumors compared to LC (P < 0.001), with an AUC 

of 0.790, outperforming AFP’s AUC of 0.524 (P = 0.002). 
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Supplementary Figure 6. GULP1 expression and its validation in vivo HCC models. (A) 

Relative protein abundance of GULP1 in healthy liver cell lines versus HCC cell lines, 

determined by Western blot analysis. The results indicate a marked increase in GULP1 protein 

levels in HCC cell lines, particularly in PLC/PRF/5 and Huh-7 cells. (B) 

Immunohistochemistry (IHC) analysis of orthotopically injected, GULP1-suppressed Hepa1-6 

cells in mouse liver. The stained sections demonstrate a reduction in GULP1 expression in 

tumor (T) tissues compared to non-tumor (NT) tissues. (C) Validation of GULP1 suppression 

in ras-transformed NIH-3T3 cells. The bar graph shows the results of qRT-PCR confirming 

reduction in GULP1 expression (left). The Western blot analysis corroborates the suppression 

of GULP1 levels (right). (D) Comparative analysis of body weight upon GULP1 suppression 

in different in vivo models. Statistical significance was determined using unpaired t-tests, with 

***P<0.001 indicating P<0.001. Data are shown as mean ± SEM.   
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Supplementary Figure 7. Direct modulation of GULP1 by ARF6 and β-catenin in HCC. (A) 

Schematic diagram of the FRET (Förster resonance energy transfer) assay used to detect 

ARF6–GULP1 interaction. ARF6 and GULP1 were each tagged with either Sm-Bit (small 

fragment of luciferase) or Lg-Bit (large fragment of luciferase). When the two proteins come 

into close proximity, these luciferase fragments reconstitute into an active enzyme that emits a 
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luminescent signal, indicating direct protein–protein binding. (B) FRET-based quantification 

of luminescence signals under varying GULP1 expression levels in HCC cells. After 

transfection with GULP1-targeting siRNA (siGULP1) or GULP1-overexpressing vector 

(GULP_OE), luminescence was measured to assess changes in ARF6–GULP1 interaction. (C) 

FRET-based evaluation of ARF6 knockdown (siARF6). Luminescence was markedly lower 

upon ARF6 suppression. (D) Assessment of ARF6–GULP1 interaction following β-catenin 

(CTNNB1) depletion. Cells were transfected with siCTNNB1, and luminescence signals were 

measured to determine any impact on the ARF6–GULP1 complex. (E) Western blot analysis 

confirmed a decrease in GULP1 expression following ARF6 suppression. (F) Sequence logos 

representing the TCF3 transcription factor consensus DNA binding sites; the y-axis indicates 

the information amount at each motif position. (G) The binding activity of TCF3 at the GULP1 

promoter regions, quantified with the chromatin immunoprecipitation (ChIP) assays, and 

presented in bar graphs. (H) Immunohistochemistry (IHC) of β-catenin in subcutaneous and 

orthotopic HCC xenograft models, comparing negative control (siCtrl) and siGULP1 groups. 

Bar graphs show significantly reduced β-catenin staining with GULP1 suppression. (I) Violin 

plots from the GSE164359 dataset illustrating elevated GULP1 expression in recurrent tumor 

(RT) samples relative to primary tumor (PT) and adjacent liver tissue (AL). (J) Pearson 

correlation analysis from the GSE164359 dataset, revealing significant positive correlations 

between GULP1 and its downstream targets (CTNNB1, FN1, SOX9, etc.).  



 

78 

 

 

Supplementary Figure 8. GULP1-driven oncogenic pathways in HCC. (A) Bar chart of the 

top 20 enriched Hallmark gene sets in the GULP1high subgroup (top quartile of GULP1 

expression) compared to the GULP1low subgroup (bottom quartile) in the TCGA LIHC dataset 

(n = 371). Rankings are based on normalized enrichment score (NES). (B) GSEA enrichment 

plot for EPITHELIAL_MESENCHYMAL_TRANSITION (NES = 1.806, NOM p = 0.019). 

(C) GSEA enrichment plot for NOTCH_SIGNALING (NES = 1.559, NOM p = 0.032). (D) 

GSEA enrichment plot for HEDGEHOG_SIGNALING (NES = 1.541, NOM p = 0.043). 

 


